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ABSTRACT 

 

A novel approach to technical risk identification and analysis for major weapons systems acquisitions is 

proposed. It is informed by the limitations of the current risk matrix. The approach is to examine 

representations of the evolving system design to locate sources of complexity and then inform the 

program manager as he/she makes technical choices among competing alternatives. Some of the 

alternatives will create more complexity and therefore more risk. The PM will then be able to balance 

risk and reward at the point of decision-making, deciding to engage risk at that moment by his/her 

choices. In addition, we propose to rate or score the contractor + government organizations' abilities to 

master the complexity they have chosen, so that the PM will know whether there is a match of product 

complexity with organizational capability. 

  

Future work will add dimensions of interconnections and interdependencies among risks, timing, delay, 
order of risks, and uncertainty. 
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CHALLENGES 

 

“It is not possible to know exactly how a particular design will perform until it is built. But the product 

cannot be built until the design is selected. Thus, design is always a matter of decision making under 

conditions of uncertainty and risk” *(Hazelrigg, 1998), quoted in (Deshmukh, 2010), p. 128]. 

 

1. RISK MANAGEMENT IS MANY PROCESSES 

Defined in the DoD Risk Management Guide (2006, p. 1), 

Risk is a measure of future uncertainties in achieving program performance goals and objectives 
within defined cost, schedule and performance constraints. Risk can be associated with all 
aspects of a program (e.g., threat, technology maturity, supplier capability, design maturation, 
performance against plan,) …. Risk addresses the potential variation in the planned approach 
and its expected outcome.  

 

Risks have three components: 

 

• A future root cause (yet to happen), which, if eliminated or corrected, would prevent a 
potential consequence from occurring, 

• A probability (or likelihood) assessed at the present time of that future root cause occurring, 
and 

• The consequence (or effect) of that future occurrence. 

A future root cause is the most basic reason for the presence of a risk. Accordingly, risks should 
be tied to future root causes and their effects.  

 

Further risk management is a number of processes: 
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Figure 1. DoD Risk Management Process (from DoD Risk Management Guide, 2006, p.  4) 

Of these processes, which are the most important to practice, to "get right"? If we want to improve the 

management of technical risks, on which process(es) should we focus? 

Our conjecture is that Risk Identification and Risk Analysis are key because, as in the Figure, everything 

else depends upon them. So, we are starting there. 

 

2. FORECASTING RISK IS DIFFICULT AND SUBJECTIVE 

As listed above, program management needs to collect and identify: future root causes, likelihood, and 

consequences. This is often, under the best circumstances, by assembling experts and asking them to 

converge on the three components. It is a group process and based on the extensive practical 

experience of the expert panel. It is necessarily subjective, based on the memories of the panel 

members and their analogic reasoning. 

Tversky and Kahneman  (see, for example, (Kahneman, Slovic, & Tversky, 1982)) are celebrated for their 

prospect theory, which explains how our biases interfere with our rational appraisals. They explain how 

our subjective judgments are susceptible to internal and also normative forces that cloud our 

perceptions and our reasoning. Accordingly, subjective assessments of technical risk are vulnerable to 

biases. 

And this mentions nothing about the problem of using analogic reasoning, which is what expert team 

members often apply. The challenge in analogical reasoning is that the strength of the relevant 

similarities must outweigh the strength of any significant dissimilarity. But is that what happens when 

experts get together to evaluate risks? When one expert says, "This is just like Project X, so I can foresee 

a risk of type A," is the analogy apt? Is it questioned? [Here is a list with examples of errors by analogy: 

http://www.skepdic.com/falseanalogy.html] 
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Expert panels, in creating their subjective assessments, are susceptible to both biases and errors in 

analogical reasoning. 

 

3. RISK IDENTIFICATION IS ALMOST ALWAYS POST HOC 

One part of the Risk Management Guide states, "Use a proactive, structured risk assessment and 

analysis activity to identify and analyze root causes, " (p. 5) and others state, "Use the results of prior 

event-based systems engineering technical reviews to analyze risks potentially associated with the 

successful completion of an upcoming review," (p. 5) and "During decomposition, risks can be identified 

based on prior experience, brainstorming, lessons learned from similar programs, and guidance 

contained in the program office RMP [Risk Management Plan]." p. 7. 

Looking backwards to find risks is unassailable, except that it is applied by judgment and analogy and 

therefore subject to bias and error. For all of the looking backwards, the purpose is to predict the future. 

Where is the justification of the predictions? 

 

OUR APPROACH AND ITS JUSTIFICATION 

 

SUMMARY 

Our approach is to characterize aspects of the technical products being developed in a way that would 

inform a program manager about to make decisions by weighing alternative technical courses of action. 

We would score or rank the alternatives based on the relationship that each alternative would incur 

future risk. 

 

The result of our research would be a scorecard, dash board, or workbench that the program office 

operates before each major technical decision. The workbench would be fed information about the 

nature of the product alternatives and based on that would compute the relative attractiveness of each 

option with respect to incurring future risk. 

 

In addition to examining characteristics of the product, the workbench would also scrutinize the match 

between the characteristics of the product and the characteristics of the developing organization, as risk 

can arise relative to an organization's capability to develop a certain product alternative. 

 

As our research progresses, we intend to add capabilities to take into account the order and timing of 

decisions, their cascade effects, and the impact/influence of uncertainty. 
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We are taking this approach for a number of reasons: 

1. The current method of risk characterization, measurement, and mitigation has not improved 

even though the Department of Defense has spent tens of millions of dollars on research to 

improve it. Evidently the research results have not proven useful enough to change the 

guidance. After all, much of the DoD research investment has been in Bayesian methods, which 

have been around for almost 200 years and still have not found their way into the published 

guidance. 

2. We have all heard the remark, usually made informally by those who see many major 

weapons systems acquisitions, that by the time the real issues become visible it is very late and 

the effects have spread. We seek to identify risky courses of action at the time they are being 

considered for selection. This is very early in the unfolding of the systems development, 

hopefully in time to take alternative steps if unaddressed impacts are discovered. 

 

A. OBJECTIVE ASSESSMENT 

Our approach does not use any judgment, only objective measures of the product and of the 

organization's capability to create the product. Accordingly, we hope to circumvent the subjective biases 

that can be found in the current DoD risk identification and analysis practices. 

B. QUANTIFIABLE ASSESSMENT 

We seek to compute characteristics about the product alternatives and about organizational capability, 

so the outputs of our analysis would be quantities that would aid program management in making 

decisions among competing technical alternatives. 

C. AID IN DECISION MAKING 

Since our approach is a tool to be used during decision-making, we are not taking a retrospective view 

per se, but rather trying to give the PM information in order to avoid risk, that is, avoid encountering a 

state of nature that potentially would have unacceptably high likelihood and consequence. 

D. TIME IS A VARIABLE, RISKS ARE INTERCONNECTED 

There is no explicit time dimension in the current DoD risk management practice. We, on the other 

hand, see technical risks as largely interdependent/interconnected, so the order in which the technical 

decisions are considered matters. Accordingly, as our research progresses we intend to be able to 

present a program manager with the options during decision-making of understanding the effects of 

deferring or accelerating certain technical decisions. 

 

In addition, time plays another important role in risk because time delay between cause and effect 

interferes with our ability to connect the two, our ability to reason about what the root causes are of 

untoward and/or unexpected program outcomes. Therefore, characterizing the time-dependent (that is, 
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dynamic) flow through the program and technical product structures is crucial to identifying real, latent 

causes, not just their surface symptoms, such as cost and schedule over-runs. 

E. ADVANCES IN RISK MANGEMENT: WHERE TO LOOK  

A great deal of work already has been done on improvements to risk identification and risk analysis. For 

example, the DoD has sponsored: 

The Software Engineering Institute's Risk Program for several decades. 

University of Virginia's Center for Risk Management of Engineered Systems for several decades. 

Research at the Air Force Institute of Technology and Naval Postgraduate School for decades. 

Research and application at its FFRDCs, such as MITRE and Aerospace, for decades. 

 

While the knowledge created at those institutions has varied, much of it centered on obtaining a more 

complete list of risks and better estimates of the likelihood and consequence. Evidently the fruits have 

not been powerful enough to change the written DoD guidance. 

 

One could consult the major defense contractors, as for decades they have been actively managing the 

risks of developing weapons systems. We approached a few of them informally to ask if they would 

discuss with us their risk management methods. They responded that they considered their risk 

management practices to be competition sensitive and determinative of their commercial success and 

would not share them. We also approached a few industrial firms and received the same answer. 

 

What about firms that deal in risk every day, such as insurance and investment businesses? Here the 

final report of a previous SERC research topic, valuing flexibility (RT-18), is dispositive (Deshmukh, 2010). 

 

But what is the connection between valuing flexibility and risk? One parallel is that both attempt to 

characterize future uncertainties. After all, flexibility is about responses to future changes, some 

unplanned. "Most approaches for valuing flexibility depend on good estimation of uncertainty. 

However, estimating and characterizing uncertainty, even for foreseeable sources of [change], is 

difficult, especially in systems involving new technologies." p. 24 

 

Investment advisors often use the technique of Real Options to find the best investment among 

alternatives, akin to what acquisition program managers must do at multiple points during 

development. Here are some weaknesses of Real Options in the DoD context (p. 62): 

 

" Financial options‘ assumptions, such as no arbitrage condition, complete market condition and 
infinite liquidity, may not hold for the non-financial market.  
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"Without checking the assumption of Black-Scholes model, using the Black- Scholes formula does 
not make sense. For example, the strongest assumption of the model is the fact that uncertainty can 
be modeled in geometric Brownian motion and as a result the distribution of future status is [a] log-
normal distribution.  If the future environment cannot be modeled with this stochastic process and 
distribution, the Black-Scholes model is not valid. 

*…+ 

"Almost all real options related literature assumes the risk-neutral decision maker implicitly or 
explicitly. This assumption need[s] to be check[ed] in [the] risk management sense." 

 

Further, the report continues, with some overlap with the previous list (p. 64): 

 

" Real options must be described in terms of specific technologies and the systemic domain in which 
they are to be developed. Financial analysis alone is insufficient to frame real options. This is quite 
difficult, when as yet undeveloped technologies are under consideration. 

 

"Financial options are well-defined contracts that are tradable and individually valued, while real 
options are not: real options have no contract-specified exercise price of time. The usefulness of 
valuing every potential program alternative that provides flexibility is not clear. 

 

"In military procurement programs, previous experiences associated with the development of 
similar technologies are not necessarily available. Hence, valuing real options on the basis of so 
called "comparables" becomes questionable because of the absence of available data. 

 

"Real options are most often path-dependent. Hence, direct applicability of traditional financial 
options methodologies is not appropriate, as the underlying stochastic differential equations are not 
necessarily available. 

 

"Real options in military acquisition programs are likely to be highly interdependent. Traditional 
financial option pricing methods fail here, again, because underlying stochastic differential 
equations may be unattainable. 

 

"In military procurement programs, there may be no justifiable reason to accept the "no arbitrage 
assumption". In this case, general option pricing theory breaks down. 

 

"There is typically no quantitative or qualitative reason to believe the real options have uncertainty 
in price that follow Brownian motion. That is, unlike in financial markets where there exist both 
quantitative and qualitative analyses that support by weak convergence in measure principles that 
suggests a limiting Brownian motion price process, there is typically no similar reasoning supporting 
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the assumption of Brownian behavior. Hence, the semi-martingale arguments leading to the 
principal results of general option pricing are not applicable." 

 

And this does not even address what may be the most difficult part of the application of Real Options in 

the DoD context: the necessity to assess the probability of each state of nature in the unfolding of future 

events. Investment analysts use historical information to estimate those probabilities, but there is little 

on which to base estimates of weapons systems development probabilities, especially of new 

capabilities. 

 

In the end, we cannot rationally defend what some other communities, above, use to manage risk 

because their assumptions and sources of data match so little of our situation. 
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CONNECTING TECHNICAL RISK AND TYPES OF COMPLEXITY 

A. A FEW DEFINITIONS 

The field of complexity is rich and spans over the past half century in various fields of knowledge ranging 

from biological systems to cyber-physical systems. As it has been discussed by several researchers, an 

strong correlation can be observed between the complexity of the system and various ranges of failures, 

including catastrophic failures (Merry, 1995; Cook, 2000, Bar-Yam, 2003). 

 

The term “complexity” has several definitions and various related aspects and characteristics in various 

domains of knowledge. We adopt the following definition: 

 

Complexity is the potential of the system to exhibit unexpected behavior (Willcox, 2011) 

 

Complex systems exhibit the potential for unexpected behavior with respect to variables of interest. The 

potential can manifest itself in certain situations and create the actual emergent behavior or stay hidden 

as a potential. Complex systems have non-linear interactions, circular causality and feedback loops. They 

may harbor logical paradoxes and strange loops. Small changes in a part of a complex system may lead 

to emergence and unpredictable behavior in the system (Erdi, 2008). It should be noted that complex 

systems are very different from complicated systems, and there is a tendency for mistake in using these 

terms interchangeably. Complicated systems often have many parts, however the interactions between 

parts and subsystems are often well known and linear, so they do not show emergent or non-linear 

behavior. In contrast, complex system may or may not have many parts, however, at least one non-

linear behavior of feedback loop exists in the structure of the system that drives emergence and 

unknown unknowns in the system. 

The increased complexity is often associated with increased fragility and vulnerability of the system. By 

harboring an increased potential for unknown unknowns and emergent behavior, the probability of 

known interactions that lead to performance and behavior in a complex system decreases, which in turn 

leads to a more fragile and vulnerable system. That is, the presence of complexity in a system, even a 

little complexity, can swamp the behavior of the familiar, linear interactions. 
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Figure 2. Map of the leading scholars and areas of research in the complexity sciences 

(http://en.wikipedia.org/wiki/Complexity). 

 

As can be seen (but may not be able to read!) from this figure, there are many threads of research and 

many definitions of complexity. Our job is to pick and choose among the relevant threads of research 

which can contribute to the understanding of complexity at various milestones of acquisition programs, 

and identify the ones most applicable to characterizing technical risk. 

 

At this early juncture, we can say only that we have not focused on the following areas in the diagram 

because we think they are not relevant to acquisition programs: 

Artificial intelligence (distributed neural networking) 

Agent-based modeling (cellular automata, genetic algorithms, artificial life, multi-agent 
modeling 

Case-based modeling 

New science of networks 

Global network society 

Fractal geometry 

Synergetics/macroscopic modeling 
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Ecological systems theory 

Fuzzy logic 

 

We are selectively making our way through the remainder to assess suitability to characterize technical 

risk based on what the government sees during the acquisition life cycle. Certain areas, such as 

emergence, are potent metaphors, but there is a connotation among complexity researchers that 

emergence is a property that cannot be sensed by looking at components, so for the moment we are 

not investigating emergence further. 

 

We are looking closely at these kinds of complexity, in particular: 

 

 Structural – The arrangement of pieces and parts that has loops, circuits, so that feedback is 
possible. 

 Dynamic – The behavior of a system that unfolds as it executes. Here we look for delays and 
non-linearities. 

 Interface, interconnection – How parts communicate and touch each other and whether that 
connection is across a barrier, whether there is a tight or loose connection, whether information 
is hidden inside the components, and whether the parts are of different "kinds." 

 

B. HOW COMPLEXITY MANIFESTS AS TECHNICAL RISK 

B.1 MECHANISMS AND EXAMPLES 

One example of risk is interconnecting inhomogeneous elements. The term is meant broadly, as it could 

refer to trying to connect two systems that had never been connected before, even though each of 

them was mature in itself. The poster-child for this type of risk is DIVAD, the M247 Sergeant York "self-

propelled anti-aircraft gun" (en.wikipedia.org/wiki/DIVAD). Due to the urgent need for the capability, a 

decision was made by the Army to select a design that joined three commercial off the shelf systems: an 

Army M48 Patton tank chassis, a radar, and a cannon. 

The three particular commercially off the shelf systems selected by the vendor had never been 

connected and the computer control system at the heart had not yet been developed. In the end, the 

tank was too slow to protect the ground vehicles it was intended to. The radar, while off the shelf, was 

off the shelf for an airplane! Airplane radars work internally by detecting movement. Clearly, a tank in 

the field was not (always) in motion and nor were its targets. The physical layout of the radar with 

respect to the cannon had the cannon sometimes getting into the radar's line of sight. The tank's turret 

moved too slowly to track realistic air targets because, after all, it was never meant to. The list went on. 

And the program, comprised of commercial off the shelf systems, was cancelled. 
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How would our analysis have identified these risks? By looking for inhomogeneous interfaces. 

 

A second type of complexity comes from feedback and delay. Feedback itself is a structural 

characteristic: it is a loop somewhere in the product being developed or in the organization creating the 

product. And the loop can amplify or dampen the signal passing through it, distorting the original (think 

of the child's game of "telephone"). And the transit may be delayed at points, which creates difficulty for 

us humans to reason about what causes the effects, the surface symptoms, that we see. 

 

The field of system dynamics is awash in examples of loops and delays, and there is even something of a 

cottage industry in one particular example, the Beer Game1, in which a single instance of a change in a 

single signal causes the humans operating the game to respond in a way that causes oscillation that 

appears to be unable to be dampened. All of this due to the (underlying) structure of the system, 

illustrating that structure produces behavior. 

 

The example below comes from a book on business management (Beer, 1979), written to create interest 

in cybernetics. In this example are trying to construct a system that has even an output around the value 

0, given an input single in the form of a regular sine wave: 

 

 

Figure 3. An output varying regularly about a mean value that is its target, showing the corrections at appear 

necessary at each time epoch when the measurement is made. (Beer, 1979), p. 60 

 

The approach is to generate a -1 when we see a +1 and generate a +1 when we see a -1. Here is what 
happens, according to that rule: 

 

                                                           

1
 http://www.systemdynamics.org/products/the-beer-game/ 
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Figure 4. Explosive behavior induced by the direct application of error corrections to a system that has reversed it 

input states by the time the correction is applied. (Beer, 1979), p. 60 

 

As seen, the system is "exploding." Why? Because the signal we generate to correct for the input is just 

one phase late, so instead of subtracting when it sees a +1, there is a slight delay and the negative signal 

we generate supplements an already negative signal, making it even more negative. 

 

The important points are: this is common and is the result of the structure of the system, both static and 

dynamic. Our methods of risk identification and analysis would try to identify such connections and 

delay. 
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B.2 RISK AND COMPLEXITY CORRELATION 

Risk can be defined as “a measure of future uncertainties in achieving program performance goals and 

objectives within defined cost, schedule and performance constraints.”{US Department of Defense 

(Office of the Undersecretary of Defense (Acquisition, 2006 #1, p. 1}.  

 

For complex defense acquisition programs, often various types of risks exist that manifest themselves at 

different times throughout the acquisition process, including system development. These risks can be 

technical, programmatic or strategic in nature and can result in substantial cost overruns, delays, 

performance issues, reduced adaptability to changing requirements or even total cancellation of a 

project.  One of the challenges with assessing risk using the traditional risk reporting matrices (See 

Figure 5) for complex systems acquisition is that neither the likelihood nor the true consequence of a 

risk can be objectively established. For one, there is substantial uncertainty around the interactions 

among different components of a system as well as uncertainties about how effectively various kinds of 

risks can be managed across a multiplicity of interfaces.   

 

In this research we are proposing a fundamentally different approach to risk management, one that 

looks at how complexities within the technical and organizational realms result in uncertainties that can 

ultimately lead to risks in the system. The premise of this research is that in the realm of technical 

project risk, it is the complexity of the system combined with the experience/know-how of the 

contractors that determines system uncertainties and the resulting risks. 

 

 

Figure 5. Traditional Risk Reporting Matrix {US Department of Defense (Office of the Undersecretary of Defense 

(Acquisition, 2006 #1} 
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The objective of this research is to link technical complexity with uncertainty and risk across different 

stages of the acquisition process, and dynamically quantifying and updating risk elements for decision-

making on project continuation, modification or retirement. 

Complexity may be the root cause of many unforeseen risks. Program/project complexity per se can 

generate negative consequences that may often take the project management team by surprise. 

Common and advanced methods of risk modeling, including, for example, Bayesian Networks, cannot 

predict the sort of emerging risks that manifest continuous ripple effects that unfold one after the other 

almost for the entire duration of the complex projects. This type of intimidating effect of complexity is 

not something one would like to have for the entire program duration, or perhaps at any time during 

the program, as the effect is one of being out of control, or, indeed, in the control of something 

unknown. Often the complexity manifests in risk and risk creates more complexity.  This is known as 

complexity-uncertainty death spiral. In several case studies in our previous research, we have observed 

that the increase in structural complexity increases the risk and therefore occurrence of the minor 

undesired event (Efatmaneshnik and Nilchiani, 2012)(Nilchiani and Heydari, 2012). The unfolding of the 

first risk oftentimes affects the structure of the system in a manner that increases the structural 

complexity. The incremental increase in structural complexity again can contribute to the next risk to 

unfold and the spiral escalation can continue. We model this process by hybrid techniques and seek 

techniques that tackle the root cause of hidden risks that manifest in the form of a set of continuously 

mysterious (no clear root cause) risks. There is a very intricate relationship between structural 

complexity and fragility of complex Systems of Systems that can be the result of an escalation of overall 

system sensitivity, sometimes in a very short time period (Figure 6).   

 

 

 

Figure 6. The Complexity-Risk spiral. Insignificant uncertainties and risks in combination with structural complexity 

escalate into a fragile situation and to a point of no return at which failure is certain.  
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Figure 7. Structural complexity and risk (uncertainty) correlation in the DARPA F6 program. 

 

Figure 7 shows an example of the structural complexity metrics that we defined and used for the DARPA 

F6 program on fractionated space systems (Nilchiani, 2012). Fractionated space systems are a network 

of satellites in orbit that can consist of different number of heterogeneous satellites with various 

architectures flying in formation. Our research has shown a direct correlation between an increase in 

structural complexity and how fast a failure or risk in a network of these satellites propagates (such as a 

security attack on one of the satellites in the network). Figure 8 shows some of the results of the F6 

simulation that connects the complexity measure of the system to the mean time to failure for various 

architectures of the fractionated space systems. 

 

Collec&ve(Uncertainty((

C
o
m
p
le
xi
ty
( Point(of(no(return(

t1(
×(
(

t2(
×(
(

σ!
! !

tn(
×(
(

Uncertainty	Modeling	and	
Correla on	Building:	
- Various	uncertainty	types	affect	
design	structure	matrix	differently	
- 	Correla on	between	the	various	
uncertainty	types	and	the	order	of	
uncertain	events	

σ!
! =

1

1
! !
! +

1
! !
! +⋯+

1
! !!

!

System	DSM	

! ! =

0 ! ! ,!
! ! ,! 0

⋯ ! ! ,!
⋯ ! ! ,!

⋮ ⋮
! ! ,! ! ! ,!

⋱ ⋮
⋯ 0

!

! Complexity	measure	

! ! = ! ! ! = ! ! " # ! ! ! !
! !

• 	New	System’s	DSM	a er	Uncertain	event	at	t1	
• 	New	Complexity	Measure	a er	t1	
• Modeling	the	possible	following	probable	
uncertainty	and	it’s	effect	on	the	new	DSM	(Systems	
Dynamics	and	feedback	loops)	
• 	System	Failure	assessment	

t	



UNCLASSIFIED 

Contract Number: H98230-08-D-0171  TO 0030, RT 040 

Report No. SERC-2013-TR-040-2 

Revised September 3, 2013 
22 

 

Figure 8. F6 Simulation results showing that increased structural complexity  

leads to shorter time to failure in the system. 

 

According to some of our initial studies (Salado and Nilchiani, 2012; Efatmaneshnik and Nilchiani, 2012), 

the results of implementing some risk mitigation plans can create ripple effects through a project or 

system, increase the complexity of the system and therefore lead to making the program more 

vulnerable to known risks as well as the hidden uncertainties. Moreover, the existence of a minimum of 

only three interrelated risks with significant correlation can lead to a ripple effect that can remain 

hidden up until the last moment, when the negative consequences become fully developed and surface, 

overwhelming the system. Uncovering these types of hidden cause and effect relationships requires 

thorough structural monitoring of the system requirements and design as early as possible to uncover all 

the dependencies with a very high level analysis. 

 

Additionally, as systems demonstrate more functional complexity, they can perform more sophisticated 

missions. However, the increased functional complexity can also produce an increased structural 

complexity for systems, which in turn increases risks of failures. While more complex functionalities are 

more likely to deliver higher values, structural complexity per se is not a positive attribute. More 

complex functions can require that structurally complex structures, which one after the other can act in 

unpredicted ways. In essence, functional complexity is the driving force behind complexification.  Yet 

structural complexity is a cost on the system, because it increases the possibility of dramatic response to 

uncertainties, or fragility (Figure 9).  
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Figure 9. Logical relationship between structural and functional complexity 
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C. DERIVING PROJECT RISK FROM TECHNICAL COMPLEXITY AND CONTRACTOR ORGANIZATIONAL 

CAPABILITIES 

A modified risk cube that looks at the causal relationships among technical systems complexity and 

organizational capability in dealing with technical and strategic complexity is presented in the 

complexity-uncertainty-risk environment cube of Figure 10.  

    

 

 

Figure 10. Complexity-Uncertainty-Risk Environment (CURE) Cube 

 

Here we can explore the interrelationships among various aspects of technological complexity across 

the acquisition process phases and explore the impact of organizational complexity (capability) as well 

as strategic (that is, higher level, as, for example, at the mission or campaign level) complexity on 

uncertainties and subsequently risk. The unfolding of the technical complexity depends on the inherent 

requirements complexity, the system design, and the capabilities of the contractor organization(s) to 

match their internal organizational complexity to manage the technical complexity.   In our current 

research we are addressing only the top row of Figure 10, the technical aspects of the system and its 

creation and testing. 

 

Figure 11, below, illustrates that below the minimum required critical complexity a system cannot 

perform the functions that are expected and above a maximum tractable complexity level, the system 

development process can spiral out of control. It is the expertise, know-how and experience of the 

contractor organization, working with the government acquisition office (where both use standard 
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technical management processes, such as version control, keeping dependency graphs current, keeping 

design changes in harmony with requirements changes, etc.), that can keep the development process 

within the boundaries of these two and stabilize the complexity level of a system. Thus, for the same 

system but different contractor + acquisition organizations, the graph in Figure 11 could have different 

forms.    

The key to acquisition risk management will therefore be to ensure a match between the unfolding 

technical complexity with the internal organization, know-how and expertise of the contractor(s) + 

acquirer in managing complexity.  
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Figure 11. Complexity evolution throughout the systems acquisition lifecycle 

 

D. ARCHITECTURAL-LEVEL COMPLEXITY MEASURES FOR ACQUISITION SYSTEMS:  
SUMMARY OF CASE STUDIES 

The first step therefore in transitioning towards a complexity-centric risk assessment is to be able to 
measure systems complexity over the acquisition process. As it is possible that there is no detailed 
design in the early stages of the acquisition process, the measurement of complexity has to start at the 
architectural (high-level requirements) level.  Tables 1 and 2 summarize the different types and planes 
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of acquisition complexity at the architectural level. It should be noted that the following Tables 
summarize some of the major variables that contribute to the increased complexity of the system. 
However the list and variables may not be comprehensive and in phase 2 of the project, we are aiming 
at identifying the majority of variables that contribute to the complexity of the system 

 

Table 1. Six types of complexity (Source: Sheard, 2012) 

Six Types  

Structural: Size Number of elements, number of instances, total cost, total number of 
requirements 

Structural: Connectivity Number of connections, density of connections, strengths of 
relationships, amount of conflict, distribution of connectedness 

Structural: Inhomogeneity 

 

Number of different types of entities, number of types of relationships, 
number of different areas within a space, diversity of sizes of elements or 
contractors or stakeholders 

Dynamic: Short-term Existence of loops/circuits, safety-criticality, tendency to blow up in 
operational time frame, seriousness of consequences of a mishap 

Dynamic: Long-term Evolution of purpose of an item, co-evolution of a variant and its 
environment, how much different the next iteration of a system might be 

Socio-political Fraction of stakeholder interests that are based on power, amount of 
disagreement among stakeholders, number of layers of management, 
changes of opinion of management or stakeholders, number of different 
cultures working together on a project, inhomogeneity of stakeholder 
utilities. 
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Table 2.  Four planes of acquisition complexity (Source: Sheard, 2012) 

Four Entities  

[Technical] System being built Product, system, system-of-systems, tank, squadron, 
database, sensor, software algorithm. 

Project or organization doing the 
building 

Project, organization, program, tasks, team 

Environment, both external systems and 
people 

Customers, buyers, market, external technological system, 
future systems that need to interface with product 

Cognitive: capacity of humans to 
understand, conceive of, build and 
operate the system. 

Learning curve, uncertainty, confusion, operator skill set. 
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E. MEASURING ARCHITECTURAL LEVEL COMPLEXITY: INITIAL EXPLORATIONS 

Based on a comprehensive literature and state of the art review we have converged on the following 

five lenses for measuring complexity. Should these prove to be inadequate for our research, we will 

devise new ones based on our own observations of systems. We will explore which of the following 

lenses of complexity measurements applied to an architecture-level systems description can dynamically 

predict acquisition risk and improve mid-process decision-support 

1. Requirement critical (algorithmic) complexity 

2. Critical control path (cyclomatic) complexity 

3. Dynamic architectural complexity 

4. Structural complexity 

5. Modified architectural-structural complexity 

We will then explore how the experience of contractors + government plays a role in managing the 

complexity of the system in the acquisition process.   

 

1) Requirement Critical Complexity 

Requirement critical complexity refers to the minimum amount of complexity a system needs to have in 

order to perform a desired set of functions in line with expressed requirements. Based on Kolmogorov 

complexity metric, it refers to the minimum set of architectural level components and linkages {y} that 

would address requirement set {x}. In other words, the requirement critical complexity of a system can 

be expressed as the minimal systems architecture {y} (minimum number and type of components and 

linkages) that would theoretically produce performance set {x}. 

 

The determination of {y} given {x} is an important research question and this research will try to 

establish this threshold for various kinds of complex systems. The calculation of requirement critical 

complexity can be done either through modified structural complexity metrics that will be discussed 

further in this document.   

 

2) Critical Control Path Complexity 

Based on the concept of cycolmatic complexity in software, the critical control path complexity metric 

measures the number of linearly independent control paths through a systems architecture graph. This 

number changes as the architecture (or the resulting design) changes over time and is estimated by the 

following equation: 
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         (t) is the critical control path complexity at time t, n(t,i) is the number of nodes in the 

connected graph of the architecture expression for module (i), l is the number of linkages at time t in 

module (i) and p is the number of distinct connected components in the architectural flow graph. And 

the sum is over all modules. 

   

3) UML-based Five-Views Dynamic Architectural Complexity (Lankford) 

Rather than a single number, the UML-based Five Views Dynamic Architectural complexity metric allows 

the measurement of various system complexity metrics over time.  

The five views complexity vector is calculated as follows: 

 

        

 
 
 
 
 
 

           

             

               

                

               
 
 
 
 
 

 

Where: 

Within  

           =Number of classes and objects within each module at time t 

              Number of processes and threads within each module at time t  

                Number of components = the number of nodes 

                Number of interfaces between each of these 

               Number of identifiable design patterns within each module 

 

4) Simple Structural Complexity (Meyer) 

Simple structural complexity can provide an easy to calculate way to capture how the complexity of a 

system is changing, by calculating changes in the number of parts (or sub-systems or systems), types of 

parts and number of interfaces over time.  

 

                                           
 

 

Where 

         Number of parts/subsystems in subsystem/system i at time t  

       = Types of parts/subsystems in subsystem/system i at time t  



UNCLASSIFIED 

Contract Number: H98230-08-D-0171  TO 0030, RT 040 

Report No. SERC-2013-TR-040-2 

Revised September 3, 2013 
30 

       = Number of interfaces in subsystem/system i at time t 

 

5) Modified Architectural-Structural Complexity (MASC) 

The modified architectural-structural complexity is the most comprehensive measure of architectural 

complexity, taking into account size, type, interconnections and interfacial complexity of architectural 

modules into consideration. It is based on Kinnunen (2000). Modifying the simple architectural 

complexity equation for MASC we get: 

 

                                                        
    

 

Where the arguments are respectively: 

 Number of distinct types of objects/components 

 Number of objects within each type 

 Number of processes/functionalities affecting an object 

 Number of objects/components affecting a process 

 Number of operations per process 

 Number of interfaces weighted with the interface complexity multiplier (ICM) (related 

to the integration readiness levels (IRLs) between different systems/subsystems).  

It should be noted that these five types of architectural level complexity measures are our initial 

exploration of the relevant complexity measures of the technical system. Our research team may have 

to define novel measures based on the existing literature on complexity that may be more useful for 

different milestones of an acquisition program, and in particular characterizing the dynamic behavior of 

the architecture. 

 

C.       THE FIT BETWEEN TECHNICAL RISK OF THE PRODUCT AND AN ORGANIZATION'S CAPABILITY TO MANAGE IT 

 

What accounts for one enterprise being able to create a complex product and another not? The primary 

conjecture, attributed to Ashby (Ashby, 1961), is that the successful enterprise that can construct a 

complex product has enough "variety" (he called it requisite variety) in the way it is organized and 

applies its resources. Variety is diversity, ability to react to various problems and opportunities, including 

unexpected ones. 

 

Perhaps one of the most vivid illustrations of variety in this context was during the Apollo 13 manned 

space flight in 1970, when an oxygen tank aboard exploded, limiting power, causing loss of cabin heat, 

reducing the availability of potable water, and increasing the concentration of carbon dioxide in the 

cabin air. It was the mounting concentration of carbon dioxide that proved most troubling, as the 
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astronauts would die of lack of oxygen if it were not reversed. A team on the ground was assembled and 

given the task of figuring out how to create a carbon dioxide removal system, given the constraints on-

board. That the ground team succeeded was a tribute to its variety, its diversity of thought, as it quickly 

suggested and tested numerous options. 

 

One of the biggest challenges in using variety to characterize organizations is that it is so difficult to 

observe, to measure. Two authors (Beer, 1979; Jaques, 2006) have suggested antidotes to this and we 

are exploring their methods. 

 

D. THE PLACES OF CASE STUDIES AND QUANTITATIVE DATA 

We are seeking to know what programs and organizations are "made of" that might inform the 

identification of risk. Our premise is that complexity is a major indicator of risk. In order to validate or 

invalidate the premise we need data. The most convincing data would be numeric, quantitative that 

showed the relationship between product complexity, say, and risk. If that data are not available, then 

we might use case studies. 

 

Since we do not yet have quantitative data, we have indeed been reading case studies, supplied to us by 

the deep reservoir provided by our colleague, Dr. Gary Witus, at Wayne State University. At one stage 

he supplied 15 cases, some with multiple artifacts. Dr. Mostashari read them and in the end was not 

able to deduce anything general. 

 

Dr. Witus responded to our request for additional case studies and we have not yet had a chance to 

absorb them, and it is a priority for our next steps. 

 

At some point – earlier is better – we are going to need access to quantitative data that will help us 

confirm or deny the connection between some measure of complexity and technical program risk. This, 

too, is a priority for the next steps. 

 

Both case studies and access to quantitative program information will help us steer where to look 

deeper, help us consider what programs are made of. In the end, it is possible that programs do not 

collect the measures of complexity that we think are the most indicative of risk, so we will have to work 

with programs on a pilot basis to install new measures and assess the ability of those measures to 

predict technical risk. 
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EXAMPLES AND SOME CASE STUDIES 

CONCEPT DEMONSTRATION:  COMPLEXITY AND RISK 
 

One of the easy ways to characterize complexity for a system at an architectural level is to analyze the 
number of different interactions between the different subsystems. 

 
Interactions can be spatial, material, energy and/or information. If we look at aircraft designs over the 
years we can see how avionics has become more complex.  

 

Figure 12. Increasing avionics complexity (dimensionless) over the years (Source: Diterick, 2010) 

Analyzing the relationship between cost and development schedule in 154 DoD projects, McNutt (2000) 
estimates the relationship between cost and complexity to be estimated by the following equation: 

 

Where the development cost is in millions of USD.   
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CASE STUDIES 

An analysis of the following 31 acquisition programs with a calibrated complexity metric shows the 
following correlation: 

 

 

Figure 13. Cost overrun as a function of log calibrated architectural systems complexity 

y = 0.0012x3 - 0.1197x2 + 4.1641x - 18.372 
R² = 0.26 
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Figure 14. Cost overrun and schedule slips for different types of weapons systems. Most cost overruns occur for 

ship systems, while most schedule slips happen for aircraft. Avionic systems have had a good track record of 

beating both cost and schedule plans.  
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Table 3.  A selection of case studies of DoD acquisition program and their percentage of cost and schedule 
overruns. 

lYIJeofSpb!m .r Pltmaly 

C-130 Aircraft Boeing 252 0 High TRL 

E2-D Advanced 

Hawkeye $17,747 Aircraft Northrup Gruman 20.3 43.2 Med ium TRL 

F-35 $326,535 Aircraft Lockheed Martin 78.2 N/A Low TRL 

FAB-T $4,688 Aircraft Boeing 29.1 35 Med ium TRL 

Global Hawk $12,812 Aircraft Northrup Gruman 172.2 127.3 Low TRL 

Grey Eagle $5,159 Aircraft General Atom ics -18 N/A High TRL 

HC-130 $13,091 Aircraft Lockheed Martin -5.1 N/A High TRL 

MQ-4CUAV $13,052 Aircraft Northrup Gruman 1.6 0 High TRL 

P-8A Poseidon $32,969> Aircraft Boeing 0.1 0 High TRL 

Reaper UAV $11,919> Aircraft General Atom ics 18.9 19 Med ium TRL 

Excalibur Gu ided 

Artillery $1,781 Artillery Raytheon 282.4 27.2 Med ium TRL 

IDECOM $821 Avion ic Syst em ITT Electron ics -0.5 -8.5 High TRL 

Jo int Precision-

Apparoach and 

Land ing Syst em $26,575 Avion ic Syst em Raytheon -2.9 2.7 High TRL 

Airbrone and 

Tactical Rad io 

Syst em $8,160 Communication Syst em Lockheed Martin 0.1 13.8 Med ium TRL 

Jo int Tactical 

Rad io Syst em 

Handheld $8,358 Communication Syst em General Dynamics 1 22.4 Med ium TRL 

Mob ile User 

Objective Syst em $6,978 Communication Syst em Lockheed Martin 3.8 28.9 Med ium TRL 

Navy Multi-band 

Term inal $1,214 Communication Syst em Raytheon -11.2 0 High TRL 

Warf ighter 

Information 

Network Tactical $6,052 Communication Syst em General Dynamics 8.6 42 Med ium TRL 

Apache block IliA $10,737 Helicopter Boeing 39.7 3.8 High TRL 

CH-53 $22,439> Helicopter Sikorsky 5.7 32 High TRL 

AGM88E $1,902 M issile ATK M issile Syst ems 10.9 22.4 High TRL 

Army Integrated 

Air and M issile 

Defense $5,529 M issile Northrup Gruman 9.9 1.3 High TRL 

Jo int Land Attack 

Cru ise M issile 

Defense $7,858 M issile Raytheon 18 6.2 Med ium TRL 

Standard M issile 

RAM $6,297 M issile Raytheon 10.5 25.3 Med ium TRL 

CVN 78 $33,994 Sh ip Huntington Ingalls -4.4 13.1 High TRL 

DOG 1000 $20,985 Sh ip BAESystems 543 73 Low TRL 

Jo int Highspeed 

Vessel $3,674 Sh ip Austral USA 1 4.2 High TRL 

LHA Replacement 

Assault Sh ip $10,096 Sh ip Huntington Ingalls 5.8 13 High TRL 

LCS $32,867 Sh ip Lockheed Martin 76 183 Low TRL 

GPS Ill $4,210 Space Syst em Lockheed Martin 6.8 N/A Med ium TRL 

Space-Based IR 

Syst em {SBIRS) $18,266 Space Syst em Lockheed Martin 231.2 N/A Low TRL 
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Figure 15.Average program size (total program cost) of case studies explored in this research (in million $) 

 

ADDITIONAL CASE STUDIES (NOT INCLUDED IN COMPLEXITY ANALYSIS) 

The following are additional case studies the team looked at, but most were suffering from program 
complexity rather than technical complexity.  

 

A-10 THUNDERBOLT II (AIRCRAFT) 

Acquisition Organization: U.S. Air Force 

Risks and Weaknesses 

 Technical: Concurrent development of a new technology (the GAU-8/A gun system) and the 
aircraft at the same time with the aircraft architecture revolving around the armament system 
created delays in the acquisition process. Also the original structural design proved inadequate 
for the design life, and even fixes during production were inadequate for all but the latest 
aircraft produced. 

 Programmatic:  Overlooked problems associated with production readiness and contractor 
financial stability did not go away and had to be resolved far too late in the development 
program. Additional problems included loss of the Original Equipment Manufacturer (OEM), on-
again/off-again decisions to retire the A-10, unstable funding for inspection and repair, and 
major personnel disruptions resulting from a BRAC decision. Critical “health of the fleet” 
structural inspections were not performed during sustainment, and a subsequent repair 
program failed to provide the desired level of life extension. 

Strengths  

Close attention to key mission characteristics (lethality, survivability, responsiveness, and 
simplicity) allowed the concept formulation and subsequent system design to result in an 
effective CAS aircraft, and design-to-cost goals kept the government and contractor focused on 
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meeting the critical requirements at an affordable cost. The A-10 did not meet all its cost goals, 
but it came much closer to them than most major defense development programs did in that 
time frame or since then. 

Complexity Factors Leading to Risk 

 Low TRL technology at core of systems architecture (Interface complexity) 

 Requirement changes rendering architecture inadequate (Requirement Complexity) 

Contractor technical and financial capability (Organizational Requisite Complexity) 

Source: A-10 Thunderbolt II (Warthog) SYSTEMS ENGINEERING CASE STUDY , Air Force Center for 
Systems Engineering 

 

C-5A GALAXY (AIRCRAFT) 

Acquisition Organization: U.S. Air Force 

Risks and Weaknesses 

 Technical: A Weight Empty Guarantee was included in the specification as a performance 
requirement and in the contract as a cost penalty for overweight conditions of delivered aircraft. 
The aircraft Weight Empty Guarantee dominated the traditional aircraft performance 
requirements (range, payload, etc.), increased costs, and resulted in a major shortfall in the wing 
and pylon fatigue life. The stipulation of a Weight Empty Guarantee as a performance 
requirement had far-reaching and significantly deleterious unintended consequences.  

 Programmatic: The Total Package Procurement Concept (TPPC) employed by the government 
required a fixed-price, incentive fee contract for the design, development, and production of 58 
aircraft. It included a clause giving Total Systems Performance Responsibility (TSPR) to the prime 
contractor. TPPC was invented to control costs, but it was the underlying cause of the cost 
overrun and limited the number of aircraft purchased under the original contract  

Strengths 

The process for developing and documenting the system performance requirements involved 
the User (warfighter), planners, developers, and technologists from both the government and 
industry in a coordinated set of trade studies. It resulted in a well-balanced, well-understood set 
of requirements that fundamentally remained unchanged throughout the program.  

Complexity Factors Leading to Risk 

 Detrimental hard requirement with cascading effect on mission critical requirements and 
architectural design (Requirement complexity) 

 Weight, wing and pylon design conflict (Interfacial complexity) 

 Faulty procurement concept (Organizational Process Complexity) 

Source: C-5A Galaxy Systems Engineering Case Study, Air Force Center for Systems Engineering 
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F-111 (AIRCRAFT) 

Acquisition Organization: U.S. Air Force and U.S. Navy 

Risks and Weaknesses 

 Technical: The F-111 acquisition process suffered from a nearly impossible multi-role/multi-
service requirement specification, and a protracted development cycle in which numerous 
serious technical problems had to be identified and corrected. Of the 1,726 total aircraft buy 
that had originally been planned in 1962, only 562 production models of seven different variants 
were completed when production ended in 1976.  The F-111, like any complex weapon system 
development program, which provides new war-fighting capability, had areas of risk or 
deficiency that came to light during RDT&E even though there was perceived low risk in the 
design. The F-111 development program introduced concurrency (overlap) between design 
validation/verification and production to accelerate program 

 Programmatic: Systems Architecture and Design Trade-Offs were not performed to achieve an F-
111 design that was balanced for performance, cost and mission effectiveness (including 
survivability) and the attendant risk and schedule impacts.  The F-111 suffered from poor 
communications between the Air Force and Navy technical staffs, and from over-management 
by the Secretary of Defense and the Director, Defense Research and Engineering, and it came 
under intense congressional scrutiny, which restricted the System Program Office (SPO) Director 
from applying sound systems engineering principles. 

Complexity Factors Leading to Risk 

 Impossible requirements with severe conflicts (Requirement complexity) 

 Inadequate verification and validation (Organizational Process Complexity) 

 Multi-agency acquisition process (Organizational Process Complexity) 

 Sociopolitical sensitivity (Organizational Process Complexity) 

Source:  F111 Systems Engineering Case Study, Air Force Center for Systems Engineering 
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AGM-88E Advanced Anti-Radiation Guided Missile (AARGM) 

 

 

 

Apache Block IIIA 

 

 

Army Integrated Air and Missile Defense 
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C-130 Avionics Modernization Program 

 

 

CH 53-K Heavy Lift Replacement 

 

 

 

 

CVN 78 Class 
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DDG 1000 Destroyer 

 

 

E2-D Advanced Hawkeye 

 

 

 

Excalibur Precision Guided Artillery 
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F-35 Lightning II 

 

 

Family of Advanced Beyond Line of Sight Terminals (FAB-T) 

 

 

 

Global Hawk 
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Global Positioning System III 

 

 

Gray Eagle UAV 

 

 

 

HC-130/MC -130 Recapitalization Program 
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IDECOM Block 4 

 

 

 

Joint High-Speed Vessel 

 

 

 

 

Joint Land Attack Cruise Missile Defense 
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Joint Precision Approach and Landing System 

 

 

Airborne and Maritime Joint Tactical Radio System 

 

 

Joint Tactical Radio System Handheld 
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LHA Replacement Amphibious Assault Ship  

 

 

Littoral Combat Ship 

 

 

 

Mobile User Objective System 
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MQ-4C BAMS UAV 

 

 

 

Navy Multi-band Terminal 

 

 

P-8A Poseidon 
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Reaper UAV 

 

 

 

Space-based Infrared System Program 

 

 

Standard Missile 6 ERAM 
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IV.      NEXT STEPS 

The most pressing need in this research is access to information on completed programs that will help 
characterize the connection between some definitions of complexity and the post hoc 
prediction/realization of technical risk. 

 

In addition, we shall pursue more case studies, more literature, and more methods of characterizing 
complexity of products and organizations, including interviewing acknowledged experts. 
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APPENDIX A: LITERATURE REVIEW ON SYSTEM COMPLEXITY AND RISK 

This section provides a summary and synthesis of findings from a survey of the literature on system 
complexity and cost, schedule and performance risk in engineering development programs.  Several 
relevant and exemplar papers discussed in detail.   

The survey was restricted to publically-accessible, freely-available documents via the Internet found by 
searching on combinations of the keywords “complexity”, “complex”, “complicated”, “risk”, 
“uncertainty”, “overrun”, “slip”, “shortfall”, “cost”, “schedule”, “performance”, “acquisition”, 
“development”, “engineering”, “engineered”, “technical”, “quantitative”, “indicators”, “factors”, 
“modular”, “adaptive”, “adaptable”, “system”, “model”, “architecture”, “analysis”, and “assessment”.  
From over 2,000 web sites visited, approximately 600 articles were reviewed.  Roughly three-quarters 
focused on risk in system acquisition, with some reference to system complexity.  The remaining quarter 
focused on complexity of engineered systems, with some reference to development.   

 

A.1  SUMMARY OF FINDINGS 

This section summarizes both what was found in the literature, and what was notable by its absence. 

Many papers asserted that increased complexity was correlated with increased development time and 
cost.  Data and evidence supporting this intuitive claim was sparse.  Most of the papers were theoretical, 
often using a “toy” system model to illustrate the methods, but did not provide evidence that their 
complexity metrics 

(1) could be evaluated from data on DoD systems available during their development, 

(2) were good predictors of development time and cost, or  

(3) were predictors of cost increase, schedule slip or performance shortfall. 

Of the half-dozen articles that applied complexity metrics to acquisition program data and analyzed the 
relationship to cost and schedule, there were only three distinct analyses.  A series of papers by the 
same authors analyzed from different perspectives one set of Major Defense Acquisition Program 
(MDAP) data provided by OSD.  The final report by the Boeing team on the DARPA META II program 
analyzed data from two different divisions of the Boeing Corporation.  A PhD thesis out of the Air Force 
Institute of Technology analyzed an aircraft avionics data set.  These papers are reviewed in detail.  

The papers on complexity addressed the complexity of the system design, but did not specify the 
appropriate level of architecture and design data for analysis.  This begs the question of whether the 
design information is available early enough in the acquisition process to guide architecture and design 
decision.  The papers using the MDAP data provided by OSD, used Systems Engineering artifacts 
produced at Milestone B. 

Many of the articles on acquisition risk identified the turbulence in the system requirements and 
interdependencies among the requirements (either antagonistic or synergistic) as sources of delay, cost 
increase, time and cost uncertainty.  It is possible that complexity analysis could be applied to the 
network of requirements (or, more generally the system baseline, which consists of the capability needs, 
the system requirements, system functional decomposition and requirements), and to the change in the 
baseline over time.  This might provide useful and timely insights into acquisition risk and complexity of 
the system baseline.  These data are available to the acquisition Program Manager’s Office, are 
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developed over time, and could potentially benefit from feedback.  No analyses of requirements or 
system baseline complexity and/or change in complexity were found in the literature. 

The term “complexity” was not used consistently throughout the literature.  Many of the papers, 
especially those focused primarily on development risk, used the terms “complex” and “complicated” 
interchangeably, generally meaning “systems with lots distinct parts and lots of connections among the 
parts.”  The papers focusing primarily on the complexity of engineered systems used a variety of 
descriptions and definitions of complexity.  A number of the papers distinguished between “structural 
complexity” and “dynamic complexity”.   

 “Structural complexity” was used to refer to complexity in the architecture of the system.   Structural 
complexity was commonly based on a graph of nodes (processors) and links (interfaces) representing 
the system architecture.  Metrics ranged from simple counts of the number of links and nodes (similar to 
the measures of “complicated” systems), to refinements using algebraic network analysis of 
interconnectedness.  Some of the approaches distinguished between the number of instances of a type 
of node and the number of distinct types of nodes.  Some distinguished between uni-directional and bi-
directional interfaces. 

“Dynamic complexity” refers to the behavior or response of the system (e.g., states and transitions).  
The term was used variously to refer to systems exhibiting adaptive response to external states, non-
linear change in response depending on internal state, adaptive response to internal states, self-
organization, cascading effects, unexpected responses, or “emergent behavior”.  The dynamic 
complexity metrics require a model of the system behavior and response.  Many of the papers 
discussing dynamic complexity did not present computational metrics.  Some papers used a system state 
transition diagram model of the system dynamics, then applied analysis methods similar to those used 
for architecture structure graph complexity.    

Some of the papers distinguished between observable complexity in the system model, and hidden 
complexity within nodes and links.  Some of the papers distinguished between complexity inherent in 
the system design, and apparent complexity due to incomplete models, incomplete analysis, and 
incomplete characterization of the boundary conditions.  These distinctions are related to the 
unresolved issue of selecting the granularity or level of resolution of the system description, i.e., the 
level or scope of components or subsystem to represent as distinct nodes.   There is a tradeoff between 
the size of the model, and risk of errors in the model, versus errors due to ignorance of the behavior, 
response, and internal states of nodes and links.  None provided guidelines for determining the 
appropriate level of granularity for analysis.  

State transition diagrams to analyze dynamic complexity suffer from combinatorial explosion.  A 
network with 5 nodes and 5 links, where each node and link has two possible states (e.g., busy and not 
busy, or operative and not operative, at capacity or below capacity), has 1024 possible states (2 to the 
10th power), and over 1,000,000 possible state transitions (1024 squared minus 1024).  Complexity 
analysis requires determining which states the system can actually occupy, and which transitions it can 
experience.  Reducing the level of granularity to limit the size of the model increases the “hidden” 
complexity. 

Most of the complexity metrics relied on a node-and-link graph representations of the system in which 
nodes perform processes, and interfaces exchange data, energy, material, physical position, etc. 
between nodes.  Processors and interfaces have performance properties beyond being logical nodes and 
links in a graph:  capacity, latency, noise, losses, etc.  When there is sufficient design margin (reserve 
capacity) so that there is negligible risk that the component or interface is overloaded or non-operative, 
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then it may be possible to omit the node or link and its internal states from the analysis.  When there is 
non-negligible risk, then the node or link and its internal states should be included in the analysis.   

An important class of interfaces not addressed in the papers is insulators and isolators whose purpose is 
to prevent exchange of force, energy, signals, etc. between nodes and between links (e.g., prevent cross-
talk, short-circuits, vibration transfer, thermal degradation, etc.).  Failure of insulators and isolators, or 
temporary failure when they reach their excursion limit, create short circuits that can radically change 
the response of the system.   

A widely used approach to compute graph complexity involved the “graph energy”, computed from the 
eigenvalues of the adjacency matrix representing the graph of either the architecture structure or the 
state transition diagram.  Closed-form calculation of the graph energy is only possible for simple graphs, 
e.g., trees structures without loops or lattice structures.  Research on robust methods to estimate the 
approximate graph energy for arbitrary graphs is an area of on-going research. 

A less widely adopted approach to complexity was to use a measure of the information content in a 
minimal, irreducible, specification of the system model.   

Axiomatic Design provides an alternative view of complexity in terms of the probability that the system 
can perform the functions required of it at any given time.  Axiomatic Design focusses on the 
relationship between system structure and functions.  In principle, it addresses the frequency and 
duration of functions, and multiple simultaneous functions.   

Axiomatic Design suggests approaches to understand the modularity inherent in a design, either by 
modules associated with overlapping functions, or block-diagonal modularization to minimize interfaces 
between blocks.  Several papers contained analytic approaches or metrics incorporating modularity into 
the complexity metrics.  There is a small body of literature on multi-scale complexity, but it is oriented 
towards biological organisms, not engineered systems.   

 

A.2  REVIEWS OF SELECTED PAPERS AND PRESENTATIONS   

This section contains reviews of all of the papers and presentations analyzing the relationship of 
complexity to cost and schedule performance (beginning with the three analyzing the OSD MDAP data 
set), followed by reviews of selected papers exemplify major issues and approaches in complexity 
metrics for engineered systems.  The reviews are organized under the following topics: 

 Systems complexity and development risk 

 Structural and dynamic complexity metrics from graph complexity 

 Modularity considerations and metrics in system complexity 

 Axiomatic Design approach to complexity 

 Functional and contextual complexity 

 Apparent complexity in flight software 

 Adaptability metrics to measure complexity 

 Aspects of complexity in design 
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A.2.1  SYSTEM COMPLEXITY AND DEVELOPMENT RISK 

Programmatic and Constructive Interdependence:  Emerging Insights and Predictive Indicators of 
Development Resource Demand, M. Kasunic, M.M. Brown, P.L. Hardin, J.M. McCurley, 2010 

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1008&context=sei 

Kasunic et al [1] describe a series of research efforts investigating the role of interdependence in the 
acquisition of Major Defense Acquisition Programs (MDAPs). The research initiative was sponsored by 
the Office of the Secretary of Defense (OSD).   The overall goal of the research was to identify, quantify, 
and assess the degree of programmatic and constructive interdependence and to assess the effects of 
interdependence on program risk.  The report summarizes the results of five research studies that were 
conducted from 2004 to 2009.  

Study 1 explored the qualitative factors that confound program cost and schedule estimation. The study 
identified specific risk indicators related to requirements, institutional factors, sustainment, and team 
performance.  

Study 2 employed data-mining and statistical analyses to determine whether Defense Acquisition 
Executive Summary (DAES) reports and Select Acquisition Reports (SARs) can be used to forecast 
program performance. An interesting result from this study is that there was no evidence that such 
indicators are effective in predicting program breaches.  

Studies 3-5 employed network analysis techniques to quantitatively characterize programmatic and 
constructive interdependencies in the acquisition enterprise. These last three studies culminated in 
graphical models that relate interdependence and program cost. The research study found no evidence 
that indicators reported within DAES reports or SARs predict program breach events.  

Simple Parametric Model For Estimating Development (RDT&E) Costs for Large-Scale Systems, R.R. Jones, 
P. Hardin, A. Irvine, 2005 

http://www.technomics.net/files/downloads/papers/ISPASCEA0609-Parametric.pdf 

Jones, Hardin and Irvine [2] analyzed data provided by OSD(AT&L).  The sponsor provided data on 21 
Major Defense Acquisition Programs (MDAPs).  The data included the initial RDT&E cost estimates from 
Selected Acquisition Reports (SARs), and architecture structure metrics calculated from DoDAF SV-6 
architecture views:  numbers of send-only nodes, receive-only nodes, send-and-receive nodes, all nodes, 
one-way links, two-way links, and all links.  The analysis of the relationship between the total number of 
nodes and the total number of links showed a strong linear correlation, with one noticeable outlier.  The 
analysis initial RDT&E cost showed a strong correlation with the square of the number of links.  The data 
clustered into three groups (a large number of data points with low cost and low number of links, three 
points with mid-range cost and number of links, and one point with high cost and number of links), so 
from a statistical analysis view, there were only three distinct data points.  The authors found a 
complicated non-linear formula relating cost to the architecture structure metrics with almost perfect 
correlation.  However the number of implicit and explicit parameter exceeded the statistically significant 
degrees of freedom in the data set as analyzed.  Regardless of the statistical details, the report presents 
system architecture metrics derived from required artifacts (DoDAF SV-6 architecture is required prior to 
Milestone B), with strong correlation to RDT&E cost.   

The sponsoring agency was kind enough to provide the SERC with the original data, updated to include 
the RDT&E cost estimates as of 2008.  We re-analyzed the data, with care not to “over-fit.”  We 
conducted a bootstrap analysis (replicated random partitions of the data into “training/calibration” and 
“test/evaluation” data sets).  Analysis in log-log space showed a strong linear correlation between the 
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initial RDT&E cost estimates and the number of links in the DoDAF SV-6 diagrams.  In log-log space, the 
RDT&E cost estimates and the number of links were nicely distributed over their range.  The dispersion 
about the linear fit provided an estimate in the uncertainty (error) between initial RDT&E estimates and 
predictions from the number of links.  These results showed that 70-percent of the variance in the 
logarithm of the initial estimates of RDT&E cost in one data set was predicted by (a) the logarithm of the 
number of links, and (b) the linear relationship between the logarithm of initial RDT&E cost estimates 
and logarithm of the number of links derived from a sequestered data set.  

No relationship in the change in RDT&E costs from the initial estimates and the 2008 RDT&E cost 
estimate bore any relationship to the architecture parameters.  Since the programs were started at 
different times and on different schedules, the programs developments from inception to 2008 were 
not samples from the same population.  The DoDAF SV-6 diagrams and architecture data were not 
updated. 

Programmatic Complexity & Interdependence:  Emerging Insights and Predictive Indicators of 
Development Resource Demand, R. Flowe, M. Brown, P.L. Hardin, 2000 

http://acquisitionresearch.net/_files/FY2009/NPS-AM-09-058.pdf 

Flowe, Brown and Hardin [3] prepared report for the Defense Science Board addressing the effects of 
technical interdependence among programmatically-independent acquisitions, whether explicit as in 
Systems-of-Systems, or implicit.  The report finds that interdependencies have non-linear scaling effects 
that are not captured in technical development and integration cost estimates.  The research used data 
extracted from formal program documentation including Defense Acquisition Executive Summary 
(DAES) Charts, Selected Acquisition Reports (SARs), Budget Item Justification Exhibits, Information 
Support Plans (ISPs), etc.  The research analyzed dependencies of MDAP programs on other MDAP 
programs and on non-MDAP programs that were not required to report program status.  The report 
presented a network diagram program interdependence and cost growth of the MDAPs, but did not 
quantitatively analyze the data.   

The network consisted of 21 MDAPs, 162 non-MDAP programs, 10 direct dependencies between 
MDAPS, and 257 dependencies of MDAPs on non-MDAP programs.  On average, an MDAP program had 
13 external dependencies (one to another MDAP program, and 12 to non-MDAP programs).  78-percent 
of the non-MDAP programs had exactly one dependent MDAP; the remaining 22-percent had, on 
average, 2.6 dependent MDAPs.   

The fourteen MDAPs with less than 50% cost growth had an average of 11 external dependencies 
(sample standard deviation of 4), while the seven MDAPs with more than 50% cost growth had an 
average of 17 external dependencies (sample standard deviation of 7).  The difference suggests that 
more external dependencies was correlated with greater cost overrun, but the statistical confidence is 
low due to the large variance. 

Impact of weapon system complexity on systems acquisition, R.A. Dietrick, 2006  

http://dtlweb.au.af.mil///exlibris/dtl/d3_1/apache_media/L2V4bGlicmlzL2R0bC9kM18xL2FwYWNoZV9t
ZWRpYS81MDk3Nw==.pdf 

In his PhD thesis, Dietrick [4] used the number interactions among components as the theoretical 
complexity metric.  Interactions include space, energy, information, and material exchange.  Due to the 
difficulty in counting the actual interactions among system components, as a practical metric the paper 
uses the theoretical upper bound on the number of interactions among components as the practical 
measure.  The upper bound is N(N-1)/2 where N is the number of components.  The paper 
acknowledges that the level of resolution to identify components will affect the results, and comparison 
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across systems required analysis at the same level of resolution.  It does not consider modularity and 
hierarchical organization.   

The thesis presents empirical data for USAF aircraft showing: (1) increase of complexity with increase of 
year of operating capability, (2) increase of development time with year of operating capability, and (3) 
increase of development cost with increase of development time.  The thesis does not directly analyze 
system development time or cost as function of complexity on an individual system basis.  The thesis 
provides an analysis of trends, not an analysis of systems.  The paper does not address cost increase, 
schedule slip, or performance shortfall. 

META II Complexity and Adaptability Final Report, D. Stuart, R. Mattikalli, D. DeLaurentis, J. Shah, 2011 

http://www.darpa.mil/uploadedFiles/Content/Our_Work/TTO/Programs/AVM/Boeing%20META%20Fin
al%20Report.pdf 

The Boeing team’s final report on complexity and adaptability metrics for the DARPA META program 
(Stuart et al [5]) took an investigative, opportunistic and integrated approach.  They did not pursue a 
sequence of first developing a theory or computational model of complexity, then seeking data to 
evaluate metrics, then seeking data on cost and schedule, then testing the ability of the model/metric to 
explain the variance in cost and schedule.  Instead, the team identified 28 already-defined factors with 
potential value in a complexity metric, that could be evaluated from available system architecture data.  
Calculation methods for each of the inputs are included in the report.  The identified two sources of 
aircraft program data (Boeing Commercial Aircraft, BCA, and Boeing Defense Systems, BDS) for which 
system architecture data, cost data and schedule data were available (peak labor was used as a proxy 
for cost).  Armed with this data, the team conducted a “combinatorial search” for combinations of input 
terms models to explain the variances in peak labor and in schedule, using regression to estimate the 
coefficients, including linear and logarithm operations on the inputs, additive and multiplicative 
relationships.  The models that were finally selected contained up to six terms. 

The report noted that significant manual effort was required to extract the architecture data for the BDS 
programs, including interviews with the chief engineers.  The BCS data were extracted from an 
automated project management system.  The sample size was approximately 15 BCA projects and 15 
BCD projects.  The modeling was conducted separately for the BCA and BCD projects, presumably 
because the team suspected differences due to the type of project and data sources.  Not only did the 
coefficients for the models differ between the two data sets, but different inputs and functional forms 
ended up being selected. 

“Combinatorial search” modeling is at risk of using up the degrees of freedom in the data, unless the 
sample size is large.  There were 28 inputs, with the option of taking logarithm or squaring for each, and 
the options of mixed addition and multiplication, there were many more possible models than the 
sample size supported.  The report acknowledges the sample size issue.   

The team could have used bootstrap or similar techniques to examine the stability and validity of the 
models.  They did not randomly divide the data into a pair of disjoint groups, apply the process to the 
different groups to test if the same input parameters were selected for both groups.  Ideally, in this 
model development approach, iterative replication of the following steps are used to develop and justify 
the model:  (1) divide the population into three groups, (2) use the first group to select the input terms 
and non-linear functions of the model, (3) use the second group to estimate the values of the 
coefficients, and (4) use the third group to evaluate the explanatory power of the model.  This process is 
repeated with different random partitions to analyze the stability and validity of the modeling results.  
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A.2.2  STRUCTURAL AND DYNAMIC COMPLEXITY METRICS FROM GRAPH COMPLEXITY 

Meta II Complex Systems Design and Analysis (CODA) Final Report, B. T. Murray, A. Pinto, R. Skelding, O. 
de Weck, H. Zhu, S. Nair, N. Shougarian, K. Sinha, S. Bopardikar, and L. Zeidner, 2011     

http://www.dtic.mil/dtic/tr/fulltext/u2/a552676.pdf 

Murray et al [6] reported on the United Technologies team results on the DARPA META II program.  The 
report covers all aspects of the United Technologies effort on the program.  Section 3.16, “Complexity 
and Adaptability Metrics in Design” is particularly relevant.  The project did not apply the methods to 
real systems or attempt to investigate their ability to explain cost, schedule, overruns and slippage.  This 
paper was selected to review as an exemplar of the architecture graph analysis methods. 

The technical approach used a “graph” model of the system, i.e., a model consisting of nodes and 
interfaces (information, energy, force, momentum, data, signals, fluids, positional relationship, etc. 
exchanged between nodes).  For computational purposes, the graph is represented by the Design 
Structure Matrix (DSM):  one row and column for each node, a one in the matrix if there is an interface 
from the row node to the column node, zero otherwise, and zero on the diagonal.  A simplified, non-
directional versions of the DSM is the association matrix:  one row and column for each node, a one in 
the matrix if there is an interface in either direction between the row node to the column node, zero 
otherwise, and zero on the diagonal.   

Structural complexity refers to the complexity of connections between subsystems.  The proposed 
metric was the number of components plus the product of the number of interfaces times the “Graph 
Energy”.  Graph Energy is computed from the adjacency matrix, a non-directional simplification of the 
DSM, has a one in each cell if the row node and column node have an interface in either direction, and 
zero otherwise.  For simple graphs, i.e., tree structures without loops, the Graph Energy is computed as 
the sum of the absolute values of the eigenvalues of the adjacency matrix.  In very simple geometries, 
loops can be isolated are treated as a single node. In complex geometries, e.g., multiple input and 
output nodes within loops, nested loops, intersecting loops, etc. other computational means are 
needed, such as Gibbs sampling, the elimination algorithm, and belief propagation.  These methods are 
approximate and not guaranteed to converge.   

Dynamic complexity refers to the complexity of connections between transient states of the system.  
Instead of analyzing the links between nodes of the system architecture, dynamic entropy examines 
links between states of the system.  The state of the system is a vector with an element for each node 
and link.  Two states are connected if there is a single event that will cause the system to transition from 
one state to the other.  Dynamic complexity is computed in the same manner as structural complexity, 
except applied to the state association matrix:  the number of states plus the number of state transitions 
times the graph energy of the state association matrix. 

The SVD calculation of graph energy works only for simple graphs, i.e., systems without feedback loops.  
Other methods computational methods are needed to estimate the graph energy for arbitrary graphs, 
and specifically for systems with nested and intersecting feedback loops. 

 

A.2.3  MODULARITY CONSIDERATIONS AND METRICS IN SYSTEM COMPLEXITY 

Degree of Modularity in Engineering Systems and Products with Technical and Business Constraints, K. 
Holtta-Otto and O. de Weck, 2007 

http://strategic.mit.edu/docs/2_19_CERA_15_2_113.pdf 
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Holtta-Otto and de Weck [7] present a structural modularity metric and “packing factor” metric to 
complement structural complexity metrics (such as the number of nodes plus the number of links times 
the graph energy).  The graph energy measures the total system connectivity.  The goal of the 
modularity index is to measure the concentration of connectivity.  The idea behind the modularity index 
is that important information describing system connectivity is concentrated in the subset of 
components that are highly connected across the network.   The modularity index is an attempt to 
measure connectivity concentration.   

The structural modularity metric is derived from the SVD of the adjacency metric, as is the graph energy.  
The graph energy is the sum of the absolution values in the SVD.  Since the SVD is a diagonal matrix, it 
can be collapsed to a vector, and sorted in decreasing order of absolute value.  The authors use 
exponential decay as a model of the decrease in sorted absolute value SVD elements.  The structural 
modularity metric is derived from the estimated rate of decay.  Other measures of concentration that do 
not assume an exponential decay could be formulated to measure the concentration of magnitudes in 
the SVD.  The authors show how the modularity in structural modularity metric dex discriminates among 
several architectures with equal numbers of nodes, links and graph energy. 

Using the SVD to compute the structural modularity metric has the same drawback as using the SVD to 
compute graph energy:  it only works for “simple” graphs – tree structures without loops.  The authors 
do not propose an approach to compute the metric for arbitrary graphs. 

The authors also propose “packing density” as a modularity metric to complement the structural 
modularity metric.  The packing density metric is the ratio of the sum of the volume of space needed for 
each component to operate (including space to move, as appropriate) divided by the total volume of the 
system.  A similar metric could be generated for weight and other cumulative constraints.  The packing 
density metric does not account for systems that share space (one moves out as the other moves in; 
since the motion is coordinated, presumably these are considered to be one component).  

 

A.2.4  AXIOMATIC DESIGN APPROACH TO COMPLEXITY 

Complexity Theory in Axiomatic Design, T. Lee, 2003 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.135.4528&rep=rep1&type=pdf 

Lee’s PhD thesis *8+ was selected for review because it presents a principled approach that expands the 
notion of complexity as a function of the structure and dynamics of a system to include the functions of 
the system. 

 

The complexity concept in axiomatic design theory is defined as a measure of the likelihood of not 
achieving a desired set of functional requirements. In this thesis, four different types of complexity are 
identified in axiomatic design complexity theory: time-independent real complexity, time-independent 
imaginary complexity, time-dependent combinatorial complexity and time-dependent periodic 
complexity. Time-independent real complexity is equivalent to the information content, which is a 
measure of a probability of achieving functional requirements. Time-independent imaginary complexity 
is defined as the uncertainty due to ignorance of the interactions between functional requirements and 
design parameters. Time-dependent complexity consists of combinatorial complexity and periodic 
complexity, depending on whether the uncertainty increases indefinitely or occasionally stops increasing 
at certain point and returns to the initial level of uncertainty. In this thesis, existing definitions for each 
of the types of complexity are further elaborated with a focus on time-dependent complexity. In 
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particular, time-dependent complexity is clearly defined using the concepts of time-varying system 
ranges and time-dependent sets of functional requirements. 

 

The Axiomatic Design model is that a Design Matrix (DM) specifies how the Design Parameters (DP) are 
related to the Functional Requirements (FR).  The FR are input to the design process, the DP are output.  
The axioms (or principles) of Axiomatic Design are: 

 Independence Axiom: Maintain the independence of functional requirements 

 Information Axiom: Minimize the information content. 

Information content is defined as the negative probability of achieving the functional requirements over 
the range of conditions.  The paper defines real complexity as sensitivity of the information content to 
changes in Functional Requirements, and imaginary complexity as uncertainty in DP values, due to 
uncertainty in FR and DM. 

 

A.2.5  FUNCTIONAL AND CONTEXTUAL COMPLEXITY 

The mathematics of IT simplification, R. Sessions, 2011 

https://dl.dropboxusercontent.com/u/97323460/WebDocuments/WhitePapers/MathOfITSimplification-
103.pdf 

Sessions [9] addresses functional complexity (as opposed to structural or dynamic complexity).  The 
paper suggests that functional complexity has two complementary components:  internal functional 
complexity and external coordination complexity.  The goal of the paper is to develop principles to 
partition a system to simplify development.  The approach is inherently hierarchical and can be applied 
to hierarchical partitioning or embedding systems.  The paper does not explicitly relate the metrics to 
development risk. 

In principle the paper takes two views of the system:  as a stand-alone system, and as an integral 
component of a system-of-systems.  Internal functional complexity is a measure of complexity as a 
stand-alone system.  External coordination complexity is a measure of complexity of the role in a system 
of systems.  The fundamental difference is the perspective, not the computational method.  Analogous 
methods are applied in both perspectives.   

The approach computes complexity as the number of interactions of states of a system over the system 
functions.  The number of states of a system computed from the number of variables (elements; nodes), 
the number of possible states for each node, and the interdependencies among the nodes to accomplish 
system functions.  For a single function, it disregards all nodes whose state does not affect the function.  
It determines independent groupings according to the rule that two nodes are in the same group if the 
performance of the function is a non-linear function of the two nodes.  Within a grouping, the number 
of states is the product of the number of states pertaining to that function over all nodes in the group.  
Different functions may produce some of the same groups.  The measure of complexity is the sum over 
all groups.   

Further rationalization in defining groupings may be possible (using the framework of normal forms in 
rational database).  The approach does not analyze overlap between functions.  Consider two groupings 
A and B based on two different functions.  If A and B are disjoint, the complexity of the union is equal to 
the complexity of the sum (the formulation in the paper).  If the nodes A and B are identical, the 
combined complexity should be equal distinct states over both function, i.e., the sum of the individual 
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complexity minus the number of overlapping states.  If A and B partially intersect, the complexity is the 
sum of the individual complexity minus the number of overlapping states.  

 

A.2.6  APPARENT COMPLEXITY IN FLIGHT SOFTWARE 

NASA Study on Flight Software Complexity, D.L. Dvorak, 2009 

http://www.nasa.gov/pdf/418878main_FSWC_Final_Report.pdf 

The NASA study on flight software complexity [10] was driven by a perception that flight software was a 
major source of cost and time growth.  The goal of the study was to identify the problems and find ways 
to mitigate those problems.  In this sense, the study was an empirical, investigative study, not a 
theoretical study.  It did not develop a formal complexity metric, but instead develop a list of potential 
causes and indicators to track.  The study identified a handful of software complexity metrics in the 
literature (e.g., cyclomatic complexity, Halstead complexity, Henry and Kafura metrics, Bowles metrics, 
Trot and Zweben metrics, Ligier metrics), but did not devote resources to the study of complexity 
metrics because the issues they  identified were not well addressed by the metrics. 

 

The study adopted the IEEE Standard Computer Dictionary definition of ‘complexity’ as “the degree to 
which a system or component has a design or implementation that is difficult to understand and verify”.  
The phrase “difficult to understand” indicates that complexity is inherently about the knowledge and 
understanding of the personnel involved in the project.  Complexity in this sense is not a computable 
property of the engineered system.  But this sense of complexity is directly related to the likelihood of 
inaccurate estimates and mistaken decisions.   

 

Flight software complexity is related to: 

• How difficult it is for a programmer to implement the requirements the code must satisfy? 

• How difficult it is for a tester to verify that the code satisfies the requirements and operates in an 
error-free fashion? 

• How difficult it is for a lead developer to manage the development of the flight software within cost 
and schedule? 

• How difficult it is for a flight software maintenance programmer to understand the original 
programmer’s work if the software must be modified after launch? 

• How difficult it is for a new programmer on a later mission to adapt the original flight software as 
heritage for the new mission? 

• How difficult it is to predict the flight software’s behavior, which in turn can drive much more 
extensive testing and more operational “hand-holding” along with their associated higher labor costs? 

 

Factors used to measure a flight software system’s essential complexity include: 

• How many functions the flight software must execute and monitor? 

• How many hardware components the flight software must monitor, command, control, and query for 
information? 
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• How many connections (both hardware and software) between components the flight software must 
monitor and manage? 

• How many control modes must be managed and executed? 

• How many software modules must be implemented in order to satisfy the flight software’s 
requirements? 

• How much coupling there is between software modules? 

• How intricate/convoluted the code is within a module (assuming best programming practices, this is a 
measure of the complexity of an associated requirement or algorithm itself)? 

• How many tests must be created and executed in order to verify that the flight software has satisfied 
its requirements and, in fact, whether it is even possible given limited time and cost to verify satisfaction 
of those requirements under all likely scenarios? 

• How “state-of-the-art” the requirement is (reflected in how demanding performance and accuracy 
requirements are relative to contemporary, heritage systems)? 

 

A.2.7  ADAPTABILITY METRICS TO MEASURE COMPLEXITY 

Designing Systems for Adaptability by Means of Architecture Options, A. Engel and T. R. Browning, 2006 

http://www.incose.org/symp2008/dmdocuments/paper_example01.pdf 

In [11], Engel and Browning assert that the objectives of design for adaptability are to make complexity 
manageable, to enable parallel work, to enable efficient recovery from mistakes, and to accommodate 
future uncertainty.  Adaptability mitigates against the risk of changing needs and technologies.  In the 
sense of the IEEE Standard Computer Dictionary definition of ‘complexity’ as “the degree to which a 
system or component has a design or implementation that is difficult to understand and verify”, 
adaptability is the antithesis of complexity.   

The paper by Engel and Browning [] develops static and dynamic approaches to evaluate adaptability.  It 
develops metrics for six dimensions of adaptability (functionality, reliability, usability, efficiency, 
maintainability, and portability).  Each of these dimensions is further subdivided.  The paper applies real 
options theory to assess value of a design including the present value of the future options the design 
provides.   

 

A.2.8  ASPECTS OF COMPLEXITY IN DESIGN 

Complexity models in design, C. Earl, C. Eckert, and J. Johnson, 2004 

http://oro.open.ac.uk/7420/1/Complexity_Models_2004.pdf 

Earl, Eckert and Johnson [12] distinguish product organization complexity, product function complexity, 
product operational complexity, development process complexity, and development organization 
complexity.  The paper describes a variety of aspects of complexity including structure, uncertainty 
(knowledge in hand versus sufficient knowledge for design, evaluation and operation), dynamic 
cascading effects, and dynamic adaptation.  The goal of the paper is to advance understanding of design 
processes and design outcomes.  No metrics are given.  No direct relationship to acquisition risk is 
presented.     
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